Request more information.

Monday
Dec 05th, 11:31 EST

Connect with us:



Follow carolinanet on Twitter



Call today: (336) 346-6000
Toll-Free: (888) 400-5557


Click to verify BBB accreditation and to see a BBB report


network monitoring tool


Proud Member of ARIN



CAROLINANET Uptime
web site hosting






Popular Links:
Please login to Automatic Backlinks and activate this site.
Netmask Reference Table






Netmask 255.255.255.0 /24 (11111111.11111111.11111111.00000000)
1 subnet
LOW IP       HI IP
x.x.x.0      x.x.x.255

Netmask 255.255.255.128 /25 (11111111.11111111.11111111.10000000)
2 subnets
LOW IP       HI IP
x.x.x.0      x.x.x.127
x.x.x.128    x.x.x.255

Netmask 255.255.255.192 /26 (11111111.11111111.11111111.11000000)
4 subnets
x.x.x.0      x.x.x.63
x.x.x.64     x.x.x.127
x.x.x.128    x.x.x.191
x.x.x.192    x.x.x.255

Netmask 255.255.255.224 /27 (11111111.11111111.11111111.11100000)
8 subnets
x.x.x.0      x.x.x.31
x.x.x.32     x.x.x.63
x.x.x.64     x.x.x.95
x.x.x.96     x.x.x.127
x.x.x.128    x.x.x.159
x.x.x.160    x.x.x.191
x.x.x.192    x.x.x.223
x.x.x.224    x.x.x.255

Netmask 255.255.255.240 /28 (11111111.11111111.11111111.11110000)
16 subnets
x.x.x.0      x.x.x.15
x.x.x.16     x.x.x.31
x.x.x.32     x.x.x.47
x.x.x.48     x.x.x.63
x.x.x.64     x.x.x.79
x.x.x.80     x.x.x.95
x.x.x.96     x.x.x.111
x.x.x.112    x.x.x.127
x.x.x.128    x.x.x.143
x.x.x.144    x.x.x.159
x.x.x.160    x.x.x.175
x.x.x.176    x.x.x.191
x.x.x.192    x.x.x.207
x.x.x.208    x.x.x.223
x.x.x.224    x.x.x.239
x.x.x.240    x.x.x.255

Netmask 255.255.255.248 /29 (11111111.11111111.11111111.11111000)
32 subnets
x.x.x.0      x.x.x.7
x.x.x.8      x.x.x.15
x.x.x.16     x.x.x.23
x.x.x.24     x.x.x.31
x.x.x.32     x.x.x.39
x.x.x.40     x.x.x.47
x.x.x.48     x.x.x.55
x.x.x.56     x.x.x.63
x.x.x.64     x.x.x.71
x.x.x.72     x.x.x.79
x.x.x.80     x.x.x.87
x.x.x.88     x.x.x.95
x.x.x.96     x.x.x.103
x.x.x.104    x.x.x.111
x.x.x.112    x.x.x.119
x.x.x.120    x.x.x.127
x.x.x.128    x.x.x.135
x.x.x.136    x.x.x.143
x.x.x.144    x.x.x.151
x.x.x.152    x.x.x.159
x.x.x.160    x.x.x.167
x.x.x.168    x.x.x.175
x.x.x.176    x.x.x.183
x.x.x.184    x.x.x.191
x.x.x.192    x.x.x.199
x.x.x.200    x.x.x.207
x.x.x.208    x.x.x.215
x.x.x.216    x.x.x.223
x.x.x.224    x.x.x.231
x.x.x.232    x.x.x.239
x.x.x.240    x.x.x.247
x.x.x.248    x.x.x.255

Netmask 255.255.255.252 /30 (11111111.11111111.11111111.11111100)
64 subnets
LOW IP       HI IP
x.x.x.0      x.x.x.3
x.x.x.4      x.x.x.7
x.x.x.8      x.x.x.11
x.x.x.12     x.x.x.15
x.x.x.16     x.x.x.19
x.x.x.20     x.x.x.23
x.x.x.24     x.x.x.27
x.x.x.28     x.x.x.31
x.x.x.32     x.x.x.35
x.x.x.36     x.x.x.39
x.x.x.40     x.x.x.43
x.x.x.44     x.x.x.47
x.x.x.48     x.x.x.51
x.x.x.52     x.x.x.55
x.x.x.56     x.x.x.59
x.x.x.60     x.x.x.63
x.x.x.64     x.x.x.67
x.x.x.68     x.x.x.71
x.x.x.72     x.x.x.75
x.x.x.76     x.x.x.79
x.x.x.80     x.x.x.83
x.x.x.84     x.x.x.87
x.x.x.88     x.x.x.91
x.x.x.92     x.x.x.95
x.x.x.96     x.x.x.99
x.x.x.100    x.x.x.103
x.x.x.104    x.x.x.107
x.x.x.108    x.x.x.111
x.x.x.112    x.x.x.115
x.x.x.116    x.x.x.119
x.x.x.120    x.x.x.123
x.x.x.124    x.x.x.127
x.x.x.128    x.x.x.131
x.x.x.132    x.x.x.135
x.x.x.136    x.x.x.139
x.x.x.140    x.x.x.143
x.x.x.144    x.x.x.147
x.x.x.148    x.x.x.151
x.x.x.152    x.x.x.155
x.x.x.156    x.x.x.159
x.x.x.160    x.x.x.163
x.x.x.164    x.x.x.167
x.x.x.168    x.x.x.171
x.x.x.172    x.x.x.175
x.x.x.176    x.x.x.179
x.x.x.180    x.x.x.183
x.x.x.184    x.x.x.187
x.x.x.188    x.x.x.191
x.x.x.192    x.x.x.195
x.x.x.196    x.x.x.199
x.x.x.200    x.x.x.203
x.x.x.204    x.x.x.207
x.x.x.208    x.x.x.211
x.x.x.212    x.x.x.215
x.x.x.216    x.x.x.219
x.x.x.220    x.x.x.223
x.x.x.224    x.x.x.227
x.x.x.228    x.x.x.231
x.x.x.232    x.x.x.235
x.x.x.236    x.x.x.239
x.x.x.240    x.x.x.243
x.x.x.244    x.x.x.247
x.x.x.248    x.x.x.251
x.x.x.252    x.x.x.255

net mask:

1111 1100 == 252


Pozar's two-bit(tm) addressing 4-bit m m m m 2-bit m m (.1) 0 0 0 0 0 0 0 1 (.2) 0 0 0 0 0 0 1 0 (.17) 0 0 0 1 0 0 0 1 (.18) 0 0 0 1 0 0 1 0 (.33) 0 0 1 0 0 0 0 1 (.34) 0 0 1 0 0 0 1 0 (.49) 0 0 1 1 0 0 0 1 (.50) 0 0 1 1 0 0 1 0 (.65) 0 1 0 0 0 0 0 1 (.66) 0 1 0 0 0 0 1 0 (.129) 1 0 0 0 0 0 0 1 (.130) 1 0 0 0 0 0 1 0 (.193) 1 1 0 0 0 0 0 1 (.194) 1 1 0 0 0 0 1 0 (.225) 1 1 1 0 0 0 0 1 (.226) 1 1 1 0 0 0 1 0
Younker's tables Here's a table showing the relationship between the / notation, the byte notation, and the corresponding binary numbers (with a dot every eight digits) for the 32 bit addresses. I've thrown in a count of how many Class A/B/C networks the larger networks encompass. / Notation Binary Byte Notation #Class ---------- ----------------------------------- -------------- ------ /0 00000000.00000000.00000000.00000000 0.0.0.0 256 A /1 10000000.00000000.00000000.00000000 128.0.0.0 128 A /2 11000000.00000000.00000000.00000000 192.0.0.0 64 A /3 11100000.00000000.00000000.00000000 224.0.0.0 32 A /4 11110000.00000000.00000000.00000000 240.0.0.0 16 A /5 11111000.00000000.00000000.00000000 248.0.0.0 8 A /6 11111100.00000000.00000000.00000000 252.0.0.0 4 A /7 11111110.00000000.00000000.00000000 254.0.0.0 2 A /8 11111111.00000000.00000000.00000000 255.0.0.0 1 A /9 11111111.10000000.00000000.00000000 255.128.0.0 128 B /10 11111111.11000000.00000000.00000000 255.192.0.0 64 B /11 11111111.11100000.00000000.00000000 255.224.0.0 32 B /12 11111111.11110000.00000000.00000000 255.240.0.0 16 B /13 11111111.11111000.00000000.00000000 255.248.0.0 8 B /14 11111111.11111100.00000000.00000000 255.252.0.0 4 B /15 11111111.11111110.00000000.00000000 255.254.0.0 2 B /16 11111111.11111111.00000000.00000000 255.255.0.0 1 B /17 11111111.11111111.10000000.00000000 255.255.128.0 128 C /18 11111111.11111111.11000000.00000000 255.255.192.0 64 C /19 11111111.11111111.11100000.00000000 255.255.224.0 32 C /20 11111111.11111111.11110000.00000000 255.255.240.0 16 C /21 11111111.11111111.11111000.00000000 255.255.248.0 8 C /22 11111111.11111111.11111100.00000000 255.255.252.0 4 C /23 11111111.11111111.11111110.00000000 255.255.254.0 2 C /24 11111111.11111111.11111111.00000000 255.255.255.0 1 C /25 11111111.11111111.11111111.10000000 255.255.255.128 /26 11111111.11111111.11111111.11000000 255.255.255.192 /27 11111111.11111111.11111111.11100000 255.255.255.224 /28 11111111.11111111.11111111.11110000 255.255.255.240 /29 11111111.11111111.11111111.11111000 255.255.255.248 /30 11111111.11111111.11111111.11111100 255.255.255.252 /31 11111111.11111111.11111111.11111110 255.255.255.254 /32 11111111.11111111.11111111.11111111 255.255.255.255 Here's an example of how to get from the binary number 11000000 to the decimal number (192). 11000000 => 128*1 + 64*1 + 32*0 + 16*0 + 8*0 + 4*0 + 2*0 + 1*0 = 128 + 64 + 0 + 0 + 0 + 0 + 0 + 0 = 128 + 64 = 192 Another example (using an arbitrarily chosen binary number): 10000100 => 128*1 + 64*0 + 32*0 + 16*0 + 8*0 + 4*1 + 2*0 + 1*0 = 128 + 0 + 0 + 0 + 0 + 4 + 0 + 0 = 128 + 4 = 132